Extra Skolem Difference Mean Labeling of Various Graphs
نویسندگان
چکیده
منابع مشابه
Skolem difference mean labeling of disconnected graphs
Let G = (V,E) be a graph with p vertices and q edges. G is said to have skolem difference mean labeling if it is possible to label the vertices x ∈ V with distinct elements f(x) from 1, 2, 3, ..., p+ q in such a way that for each edge e = uv, let f∗(e) = l |f(u)−f(v)| 2 m and the resulting labels of the edges are distinct and are from 1, 2, 3, ..., q. A graph that admits a skolem difference mea...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملskolem odd difference mean graphs
in this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. let g = (v,e) be a graph with p vertices and q edges. g is said be skolem odd difference mean if there exists a function f : v (g) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : e(g) → {1, 3, 5, . . . , 2q−1} d...
متن کامل3-difference cordial labeling of some cycle related graphs
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...
متن کاملFurther results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Statistics Studies
سال: 2021
ISSN: 2709-4200
DOI: 10.32996/jmss.2021.2.1.4